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LETTER TO THE EDITOR 

Intermittency of growth and solitons of the nonlinear 
Schrodinger equation 

A S Mikhailov 
Institute far Theoretical Physics and Synergeties, University of Stuttgart, Pfaffenwaldring 
57/IV, D-7000 Stuttgan 80, Federal Republic of Germany 

Received 8 April 1991 

Abstract. Papulation explosions in systems with binh-death processes are studied. We 
show that the fluctuations in local birth and death rates are strongly enhanced by the 
exploding system and thus the intermittent spatial distribution of the reproducing panicles 
is formed. It is characterized by presence of strong bunts separated by large areas with 
low papulation density. We estimate the probability of such rare bunts and find their 
typical forms. The analysis reveals a close mathematical relationship between the bursts 
and the solitons of the nonlinear SchrGdinger equation. 

In this letter we consider the statistical properties of spatio-temporal distributions 
which are formed in unstable systems undergoing an explosion. We limit our discussion 
to simple systems with reproduction, decay and diffusion, that are described by the 
following stochastic differential equation 

Jn a2n 
at ax'' 
-=an+f(x ,  f ) n + D -  

Here n is the population density of particles, a is the mean difference of their 
reproduction and death rates, andf(x, 1 )  is the fluctuating component of this difference. 

The mathematical model (1) is found in many applications, such as chain nuclear 
and chemical reactions (Nicolis and Baras 1984) or population biology (May 1973, 
Goel and Richer-Dyn 1974, Zhang 1986, Mikhailov and Loskutov 1991). By a nonlinear 
transformation of the variable, equation (1) can be reduced to an equation that governs 
the ballistic growth of crystals (Kardar el a1 1986). In the latter case, however, the 
function f is usually assumed to be time-independent (Nattermann and Renz 1989). 

The explosion threshold is defined by the condition that above it the average density 
(n) begins to increase indefinitely in time. In absence of fluctuations, the threshold is 
reached when the reproduction rate becomes equal to the  death rate, i.e. at a =O. 
Fluctuations decrease the threshold of explosion (Mikhailov and Uporov 1984, 
Mikhailov 1989). 

It was noted (Zeldovich e f  a1 1987) that the spatial distribution of a population 
which undergoes an explosion in a fluctuating medium should be highly non-uniform. 
It is characterized by presence of rare strong bursts which are separated by large 
regions with much lower density of the population. It was therefore proposed to call 
such distributions intermittenf. 

Hence, evolution of the spatial distribution of exploding populations may be 
approximately described in terms of rare strong bursts which wander through the 
medium, while continuing their exponential growth. As we shall see, in many aspects 
such bursts behave similar to an ensemble of independent particles. 
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Since an individual burst is a rare statistical event, its most probable (i.e. optimal) 
form can he found by going to the path-integral solution for the probability functional 
of the random field n ( x ,  I )  and by taking its appropriate optimal trajectory. As will 
be shown below, the variational equations for the optimal trajectories turn out to be 
very similar to the nonlinear Schrodinger equation (NSE). Moreover, individual bursts 
of the exploding population are closely related to solitons of NSE. To establish and 
investigate this relationship is the main aim of the present letter. 

Below it is assumed that f ( x ,  t )  in (1) represents a Gaussian noise and that 

( f ( x ,  t ) f ( x ’ ,  1 ’ ) )  = Z s ( x - x ’ ) S ( t  - t ’ )  (2) 
where s ( x )  specifies spatial correlations of the fluctuating death and reproduction 
rates. This function falls exponentially down to zero for separations x larger than the 
correlation radius ro.  The Stratonovich interpretation of the stochastic differential 
equaiion (i) is chosen. 

The presence of intermittency becomes clear if we consider the equations for the 
multiple correlation functions 

M ~ ( ~ , x I , .  .. , x k ) = ( n ( X ~ ,  1). . . n(xr ,  1 ) ) .  (3) 
Since (1) is linear, closed evolution equations for these quantities can be derived 

It is convenient to write (4) in a slightly different form 

n;l, =[a + s ( 0 ) ] k M k  - fMk 

Fhsrs 

k k a2 
i j = 1  i=, ax2’ 

i = - 2  s ( x i - x j ) - D  1 - 
icj 

The first statistical moment M , ( x ,  t) = ( n ( x ,  1 ) )  obeys a simple equation 

(7) 
J2 

M , = [ a + s ( O ) ] M , - D 7  M,. 
Jx 

If the spatial distribution of the population density is statistically translation-invariant 
and M, does not depend on the coordinate x, the last term in (7) vanishes. The first 
term in (7) describes the fluctuational shift of the explosion threshold. In the presence 
of fluctuations, the threshold is reached at a = -s(O). 

For k >  1, the linear operator L is identical to the Hamiltonian operator for a 
system of k quantum particles which interact by a binary attractive potential. The 
general solution of ( 5 )  can he written as 

M k = x  c! eXP[(a + s ( O ) ) k t - A , t l d , ( x ~ ,  , . . , xk) (8) 

whm ?.i and $i B E  thc cigcnv*!oes End the clgcnf”“c!ions of!hc opcra!or L.: For the 

I 

continuous spectrum, the sum in (8) should be replaced by an integral. 
Note that the bound states of particles, which correspond to negative energies in 

the related quantum mechanical problem, give rise to the exponentially growing 
contributions into functions Mk. In the long time limit the behaviour of Mk will be 
dominated by the contribution from the deepest ‘energy level’. 
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If the correlation radius r, is small enough (i.e. D >> s(0)ro),  we can approximately 
replace s (x(  - x j )  by the delta function in the linear operator (6), i.e. to put 

s ( x ,  - x j )  = u q x ,  - x j )  (9) 

where 

U = I s(x) dx. (10) 

The exact spectrum of the linear operator 2 with function s ( x )  given by (9) was 
found by Berezin et al (1964). Its minimal eigenvalue (that which corresponds to the 
deepest energy level in the quantum problem) is Ak = -&(u2/D)( k3- k ) .  Consequently, 
the time dependence of the correlation functions in the long time limit will be 

Mk oc exp[( (I + s(O))kt+ ( u2/ 12D)k( k2 - 1) f]. (11) 

Fast relative increase of higher correlation functions indicates a progressive develop- 
ment of an intermittent spatial pattern. 

Path-integral solutions of stochastic differential equations were introduced in 
various contexts by Martin el al (1973), Graham (l978), Janssen (1976) and Phytian 
(1977). Their construction for the case of stochastic reaction-diffusion equations was 
performed by Forster and Mikhailov (1986). In the special case of ( I )  with s ( x )  given 
by (9) the probability functional for the random field n(x,  f )  can be written in the form 

3 P[ n(x ,  t ) ]  = 9 p ( x ,  f )  exp( d x  df( H -pd) 

where 

(13) 
a2n 

H = u( in)’+ upn + Dp- 

Here p(x, f )  is an auxiliary field. Below we take u = 0. 
Optima! trajectories obey variational equations 

ax2’  

Explicitly, these equations read as 

J2?I 
d = D 7 + 2 u p n 2  

dX 

To specify an individual optimal trajectory, we should fix its initial and final points, 
For a distributed system this means fixing initial and final spatial distnhutions 

n( x, f = 0 )  = n o ( x )  n ( x , t =  T ) = n , ( x ) .  (17) 

If the transition from n o ( x )  to n , ( x )  represents an exponentially rare statistical event, 
its probability p can be estimated (up to some unknown pre-exponential factor) by 
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taking the value of the probability functional (12) for the respective optimal trajectory. 
This yields 

where popt(x, 1 )  and nopl(x, f) are the solutions of the variational equations (15). 

equation ( N S E )  

The variational equations ( 1 9 4  16) are closely related to the nonlinear Schrodinger 

It is well known (after Zakharov and Shabat 1971) that this equation is completely 
integrable. It supports a family of solutions 

27 exp[-4i(t2 - q’)t +2i5r+ is] 
cosh[2?( r - r,,) - 8 ~ 5 1 1  *= 

where 5, q. S and ro are free parameters. They describe propagation of solitons with 
velocity V = 45, width (2q)-’ and amplitude 27. 

To reveal this analogy, we write the complex conjugate of (19), 

.a$* ,-=-+2(**)‘*, a2$* 
a1 ar2 

Next, we consider $ and J,* as two independent variables, J, + U and J,* + U, and 
perform the analytical continuation to imaginary time t = 4 7 .  Then equations (19) 
and (21) become 

a’u 
ar2 

U = -+ 2uu2 

a’u 
d = ---2v U. 

ar2 

Clearly, both the nonlinear Schrodinger equations (19) and (21) with imaginary time 
and the variational equations (15), (16) represent the special cases of (22), (23). The 
difference is that, in the case of the NSE, variables U and U are complex and conjugated. 
In the case of equations (15), (16),  both these variables are real. 

Since we know the special soliton solution (20) of NSE, we can construct some 
special solutions of (22), (23) by analytical continuation in respect to  time and the 
free parameters which are present in (20). Particularly, by putting f = -iT, 5 = il, 6 = ig 
in (201, we find 

27 exp[+4(6’+ 7’)~ -26r -g] 
cosh[2q(r- ro) -8.r1[~] 

U =  (24) 

The respective solution for U is constructed by first performing the analytical continu- 
ation to imaginary time 1 = -iT in the expression for $* and then putting (= i t ,  6 = ig. 
This yields 

29  exp[-4(1’++’)7-26r+g] 
cosh[2q( r - ro) - 8 ~ 6 ~ 1  U =  
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Now, if we assume that the parameters [, 7 and g in (24) and (25) are real, these 
expressions give the solution to coupled equations (22) and (23) in the case of real 
variables U and o. This can be verified, as well, by direct substitution of (24). (25) into 
equations (22), (23). 

The variational equations (15). (16) are reduced to (22), (23) by simple rescaling 
of time and coordinate variables: 

7=u1 r = ( U /  D)’12x (26) 
and subsequent replacement of n by U and p by U. The same operations, applied to 
(24) and (25), yield certain special solutions to (15) and (16). They are discussed here. 

First we consider a family of solutions obtained by putting [ = 0 in (24) and (25). 
In the original variables x and f they read as 

Here 9 and C are arbitrary constants; they can also be expressed in terms of q and 
g as 9 = 4 q 2 ,  C = 2q e-E. 

Equation (27) describes an optimal (i.e. most probable) burst that grows exponen- 
tially in time at a rate 9. The centre of the burst is located at x = x, and does not 
change as time goes on. We see that the characteristic width Sx of the burst is not an  
independent parameter, it is related to the growth rate 9 as Sx = (D/9)”’. The narrower 
the burst, the larger its rate of growth. 

Remarkably, the respective spatial distribution of the auxiliary field p repeats the 
profile of the staying burst (cf (27) and (28)). However, instead of growing, this field 
decays exponentially in time. Note that the product p n  is time-independent. 

The soliton solutions with L f  0 give rise to the fraoelling bursts in the explosion 
problem. Using (24) and (25). we obtain 

Cexp[-(V/2D)(x- Vf-x,)] 
c ~ s h [ ( q / D ) ’ / ~ ( ~ -  Vf-xo)] n =  exp{[q - ( v2/4D)10 

Here we have 

q = 4uq2 V=4(uD)’l’[ C=2q  exp[g-(V/2D)xol. (31) 

Equation (29) describes bursts which, while growing exponentially in time, move 
along the coordinate axis x at a velocity V. When V=O, they represent the staying 
bursts that were considered above. In contrast to the staying bursts, the optimal 
travelling bursts are not symmetric. They are more steep in the front than in the rear 
side. The difference in the slopes increases with V. For each q, a critical velocity 

exists. When Vapproaches V,, the slope of the rear side of the travelling burst decreases 
and, at V = V,, it becomes equal to zero. For higher values of V, equation (29) describes 
a solitary propagating front, with the population density n going to infinity as x+  -CO. 
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The propagation velocity influences the rate Q of growth of a burst 

Q=q-(V2/4D). (33) 

It is interesting to note that Q vanishes precisely at the critical velocity V,. 
The associated pattem of the auxiliary field p ,  given by (30), represents a pulse 

which travels in the same direction with the burst of the population density n. However, 
its asymmetrical distortion is opposite to that found for the travelling burst. Namely, 
the pulse of the field p is more steep at its rear side than in the front. Moreover, the 
amplitude of this pulse is exponentially decreasing in time for V <  V,, in contrast to 
the behaviour found for the travelling burst. 

The probability T (  Q, V ,  T )  that a travelling burst with the velocity V and the growth 
rate Q is found in the system within the time interval T, can be estimated using (18). 
Substituting (29) and (30) into (18), integrating over x and applying (33), we obtain 

a(Q, V, T )  oc exp[-(4/3w)( Q+ V2/4D)3’2D”2T]. (34) 

For a given growth rate Q, the probability of bursts decreases with their propagation 
velocities V. 

It should be emphasized that the stochastic partial differential equation (1) is linear 
and it cannot support the self-propagating patterns, which are known, for instance, in 
excitable media (Mikhailov 1990). Travelling or staying bursts represent rare statistical 
events which result from a random local increase of the birth rate (or a decrease of 
the death rate) that persists for some time period. The nonlinear equations (15), (16) 
are found in the variational problem and describe the most probable ‘trajectory’ which 
leads from a given initial population distribution n ( x ,  t = 0 )  to a given final distribution 
n ( x ,  f = T ) .  The appearance of nonlinear terms in the variational equations (IS), (16) 
can be traced to presence of a multiplicative noise in the original stochastic differential 
equation (1). 

In this letter we have found only some special solutions of equations (15) and (16), 
which describe the bursts that are either staying or travelling at a constant velocity. A 
general solution of these equations would describe the most probable evolution leading 
from an arbitrary initial distribution n ( x , O )  to an arbirary final distribution n ( x ,  T ) .  
We have observed that the variational equations ( IS)  and (16) are very closely related 
to the nonlinear Schrodinger equation: It is well known that the latter is completely 
integrable using the inverse scattering method. The same technique may be applied to 
obtain a general solution of (15) and (16). 

The analogy between the variational equations (15), (16) and the nonlinear 
Schrodinger equations is not accidental. If we look at the path integral solution (12) 
for the probability functional, we can recognize further similarity between this statistical 
problem and quantization of the field which obeys in the classical limit the nonlinear 
Schr6dinger equation. It was shown (Faddeev 1980) that the latter quantized field 
describes an ensemble of particles which interact by a contact binary attractive potential. 

Above we considered only the one-dimensional problem. It was pointed out 
(Mikhailov 1989) that, for media of higher dimensionality, the statistical properties of 
population explosions are different. If the medium dimensionality exceeds two, 
intermittency is suppressed by strong enough diffusion. 

Suppression of intermittency by diffusion does not mean that the bursts disappear. 
Rather, they become much more rare and, hence, do not give a dominant contribution 
into the lower correlation functions. The most probable individual bursts are described 
by the variational equations which can be obtained by a generalization of (15) and 
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(16) to the space of the respective dimensionality d. These equations are again closely 
related to the nonlinear Schrodinger equation. 

It is known that for d = 3 the nonlinear Schrodinger equation does not permit the 
localized soliton solutions. Instead it describes wave collapses which occur within a 
finite time. After an appropriate continuation to imaginary times and complex values 
of the parameters, the collapse solutions of the NSE can be transformed into the burst 
solution of the explosion problem. The detailed analysis of intermittency in systems 
with d > 1 will be a subject of a separate publication. 

The author acknowledges valuable discussions with Professors S Grossmann and 
H Haken. 
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